实际上,机器诗可以说是当下机器所能达到的较高,甚至可能是最高水准了。
知乎专栏作者萧瑟在《当AI邂逅艺术:机器写诗综述》一文中,认为机器诗歌生成的工作,起始于20世纪70年代。但在计算机诞生之前,就有好事者弄了个高频诗歌词语转盘,转到哪个词就记录下来,然后连起来形成一首“诗”。这种诗自然会出现类似“苹果吃姑娘,残红杀马特”,逻辑不通,不伦不类的句子。当然,也可能偶然搞出“澎湃是个好新闻”这样的佳句。
这个套路叫做“word salad”——把各种词语像沙拉一样拌在一起,在有了计算机后,被引入进去,成为早期的机器诗歌生成方法。
根据萧瑟的介绍,在词语沙拉法之后,机器诗歌的传统生成办法还有基于模板和模式的、基于遗传算法的、基于摘要生成的方法以及基于统计机器翻译的方法。这些方法,要么是诗句之间缺乏语义连贯性,要么缺乏灵活性,而且都有别于诗词领域的专业知识,需要专家设计大量的人工规则,对生成诗词的格律和质量进行约束。
但是,随着深度学习技术的发展,造诗机迎来了春天。基于RNN语言模型的方法,将诗歌的整体内容,作为训练语料送给RNN语言模型进行训练。训练完成后,先给定一些初始内容,然后就可以按照语言模型输出的概率分布进行采样得到下一个词,不断重复这个过程就产生完整的诗歌。