其实人工智能计算还是分很多领域,芯片应用大概有两个极端: 一个是用于云端服务器的高功耗高计算能力的芯片,走的是高性能超级计算机(HPC)的路子;另一个是用于终端(比如手机)的人工智能芯片,这个就特别注重低功耗,对计算能力的要求不是特别高。
在云端服务器这个领域,因为要处理海量的数据,Nvidia的GPU已经成为服务器不可或缺的一部分,但Nvidia自己目前还没有打算大规模自己做服务器,因此在人工智能的云端市场,Nvidia提供的是硬件而非平台。而在终端这个领域,Nvidia基于GPU的人工智能平台一方面功耗太大,另一方面过高的计算能力反而导致成本过高,因此无法与定制芯片抗衡。其实,Nvidia的人工智能平台最具优势的应用场景是上面两种情况的中间,即数据量中等、对计算能力要求还比较高、对功耗有一定要求但是并不苛刻的地方,比如ADAS市场。Nvidia人工智能平台无论计算能力(10-100TOPS)还是功耗(10-100W)都能完美地符合要求,因此它主打自动驾驶市场并不奇怪,它在2017年1月份举办的CES上也主要发布了自动驾驶相关的产品。
Intel的话,从三个方面来说吧。第一,在云端市场,它是最大的玩家,并且正在积极准备与Nvidia抗衡,因为Intel在HPC方面的业务本来就是驾轻就熟,而Nvidia进入HPC还没有几年,只能算这个市场的new player。大概是在2013年的时候,人们才发现原来GPU可以用于深度学习,之前根本不知道这个事情。说回Intel,它在收购Altera之后推出了基于FPGA的专用深度学习加速卡,可以在云端使用。另外Intel收购Nervana后正在积极推广结合其技术为AI优化的Knight Mill至强处理器,目标也是在云端。第二,在车载端,Intel与Mobileye和BMW结成了自动驾驶联盟,Mobileye提供传感器芯片和算法,Intel提供云端计算平台,BMW提供汽车。第三,在移动端,Intel收购了Movidius,但是尚未看到大的动作。所以我预期,移动端的人工智能芯片,如果有的话还是高通之类的厂商会比较有优势。
再说Google,它推出来的芯片TPU主要是自用的。这个有点像IBM,IBM最早出的Power PC系列芯片也是为了给自己的server用。所以Google也是类似的思路,它的芯片就没有打算给别人用,换句话说它没有真的打算进入芯片这个市场,和别人竞争。
最后说AMD,它在GPU和CPU的技术都处于追赶者的位置,在AI方面比较低调,在CES上公布新产品的时候也都没有主动去提人工智能的事情。最近的新闻大概是和阿里巴巴合作云端服务作为试水。AMD的总体思路还是求稳,不刻意去跟Nvidia争谁先谁后,它就等你们把这些东西先做出来再说,自己就很踏实地把显卡技术做好。其实GPU天生就符合深度学习的要求,只要AMD把自己芯片的运算能力做上去,它很快就可以杀入人工智能这个领域中来。