梯度推进模型GBM(Gradient boosting)是一种机器学习的技术,该技术可以提高现有预测模型的准确率。
比如, 在旧金山地区的Instacart办公室,要在几个小时之内完成数千个客户订单,那么,如何给出一个最优化的方案,用最少的人力和时间去完成这些订单呢?显然需要更精确地去预测每个代购者每条可能路线的时间。此时,GBM模型就非常有用。更精准的预测可以让系统用优化算法得出最优的完成订单方案,这个方案可以比以往更快地完成客户的订单。
自然语言处理(NLP )提升用户体验
自然语言处理NLP(Natural Language Processing)实现人与计算机之间用自然语言进行有效通信的方法。在这里的用处就是分析用户以往的采购行为,然后给用户推荐可信的热卖单品。
Instacart与全美数百家零售商合作,商品汇总起来,数量竟有数百万之巨。这些产品的订单频次分布是长尾分布,那么如何能够给用户推荐那些他们真正需要而不仅仅是热卖的单品呢?Instacart用NLP技术去归纳总结,然后推荐那些即使不常被购买但是对客户有用的商品。比如某个用户经常购买啤酒、奶粉、尿布和游戏产品,那么系统或许会推荐一本《一个奶爸的自我修养》给他。
也玩深度学习
Instacart也用到了深度学习(DeepLearning)技术,比如产品目录团队使用深度学习来进行图片处理,以及代购者在商场某处,重新安排代购清单和线路。深度学习技术解决了以往机器学习中的很多棘手的问题,这为提升服务带来了新的机遇。