就在几年前,数据科学家还被视作“21世纪最性感的职业”。就算到现在,Glassdoor的“美国最佳工作”清单中,“数据科学家”依然名列榜首。
但是仅仅在诞生几年后,这个职业就已 陷入困顿 。部分原因在于其必要性,虽然学校和程序员课程依然在塑造大量粗制滥造的新手数据科学家,但这个岗位依然有很大空缺,尤其是财富1000强公司,他们都觉得很难招募到顶尖的技术人才。在某些组织中, 数据科学部门已经从原本的促进者一举“堕落”为瓶颈 。
与此同时,随着人工智能技术的民主化和 自服务工具的飞速涌现 ,现在无论数据科学技能极为有限的 数据工程师 ,甚至非技术型的 数据分析师 ,都已经可以承担原本只能由数据科学家负责的基本任务。企业中与大数据有关的很多工作,尤其是枯燥乏味的简单工作,也许会越来越多地开始由数据工程师和数据分析师通过自动化工具来执行,而不再需要具备娴熟技能的数据科学家参与。
也就是说,数据科学最终可能会 完全由机器来处理 。一些初创公司已经明确将自己的产品定位为“自动化的数据科学”,其中最值得一提的是,DataRobot刚刚通过这种想法筹集到5400万美元投资( 数据科学如何实现自身的自动化 ),Salesforce Einstein也 声称 自己可以提供能自动生成的模型。
毫无疑问,这些趋势尚未流行起来,目前在数据科学的社区里依然存在一些争议。然而数据科学家目前还不需要对此过于担心。在不远的将来,自服务工具和自动化模型选择将成为数据科学家的“左膀右臂”,而非彻底取代他们,他们可以将更多精力用于需要进行 判断、创新、社交技能,或需要具备垂直行业知识的任务。