其中的场景之一:追求简单。
例如,服装创业公司Everlane就计划针对消费者对零售商模糊定价的不满而采取措施。该公司列出了每件商品的成本,以及该公司所获得的利润。近期,Everlane告知消费者,来自内蒙古的羊绒成本出现下降。该公司随后将羊绒衫的价格下调了25美元。对于这种做法,Everlane创始人及CEO迈克尔·普雷斯曼(Michael Preysman)认为是“极度的透明”。
还有一次,Everlane决定清理服装和鞋子库存。该公司向消费者提供了付款的3种选择。最低价格仅包含商品制造和运输成本。中等价格中还包含了销售费用。而最高价格可以给Everlane带来利润。
有些人会好奇,这种人为制造的道德困境是否会是最终的价格花招?答案是否定的:87%的消费者选择支付最低价格。(选择中等价格的只有8%,而最高价格只有5%。)普雷斯曼强调,这样做是为了让消费者知道,商品如何制造,员工如何获得报酬,并让他们了解鞋盒和羊毛衫价格标签以外其他不容易被注意的东西。
普雷斯曼表示:“Everlane的理论仍是一种我们需要去证明的理论。”企业“训练美国消费者对促销上瘾。这已成为零售工业的核心部分,很难打破。因此,如果市场参与者每天都在玩这样的游戏,那么重新教育市场中的消费者就非常困难。”
然而在另一些场景下,消费者并不喜欢这样的透明度。如果他们认为自己少花了钱,认为自己有本事找到只提供给自己的特别优惠,那么即使支付更高的价格也无所谓。在这种情况下,消费者将拒绝Everlane的方式,而零售商和经济学家可以把握住自己的“圣杯”。
完美价格歧视再次被认为是只存在于课堂上的试验。然而,这种理论假定,卖家知道每个个体消费者选择拒绝的价格,因此通过提供比这一数字稍低的价格,卖家就可以实现利润的最大化。
以往,零售商使用群体数据去推断消费者的拒绝价格。2000年,有人认为亚马逊正在这样做。当时有消费者发现,在购买同一DVD时,不同用户看到的价格不同。亚马逊对此表示否认。亚马逊CEO杰夫·贝索斯(Jeff Bezos)在当时的公告中表示,这只是随机的价格测试。“我们没有测试过,也永远不会测试,根据消费者人群的不同而制定不同价格。”
布兰迪斯大学经济学家本杰明·席勒(Benjamin Shiller)近期在题为《利用大数据的第一级价格歧视》的论文中指出,在确定价格时,这种基于群体数据的做法是一种粗暴的方式。他的模型预测,如果Netflix仅仅利用人群特征信息,例如种族、家庭收入和邮政编码,去决定每月订购价格,那么利润只能获得0.3%的提升。但如果Netflix利用用户的网页浏览历史,例如用户周二上网的时间,访问烂番茄网站的次数,以及其他5000种变量,那么利润可以提升14.6%。
Netflix并没有这样做,该公司甚至并没有向席勒提供数据。(席勒从第三方获得了这些数据。)不过席勒证明,价格个性化的做法是可行的。
其他公司是否正在这样做?西班牙加泰罗尼亚的4名研究员试图回答这个问题。他们在一周时间里使用普通计算机去模拟“富人”和“价格敏感”人群的网页浏览模式。在虚拟人物“购物”时,他们看到的不是同一商品的不同价格,而是不同的商品。面向富人推荐的耳机平均价格是面向价格敏感人群的4倍。另一项试验以更直接的方式证明了价格歧视:对于同样的商品,地址为大波士顿地区的计算机看到的价格要低于马萨诸塞州更偏远地区的价格。
在题为《监测互联网上的价格和搜索歧视》的论文中,研究人员提出,消费者可以从价格歧视监控系统中获益。这样的系统能持续监控个性化的价格(不过目前并不清楚,谁将开发并运营这样的系统)。由谷歌的哈尔·瓦里安参与的另一篇论文则认为,如果价格个性化的做法太过分,消费者将会变得“更有策略”,会选择性地保守或披露信息,从而获得最优惠的价格。
对TruthinAdvertising.org的邦妮·帕腾来说,复杂的定价策略导致购物变成了一项庞大的工作。她表示,目前的情况已经“很复杂”。“一般来说,在我为孩子们购物时,我发现计算商品的实际价格很难。我的新技巧是走到收银机处再做出所有的决定。我挑选了许多衣服。在结账之前,我会忽略所有价格。如果有些商品价格太高,我会说‘不要了’。”
那么,她如何为自己购物?帕腾回答:“我不会去购物。我已经放弃了。”
在挂掉电话之后,我陷入了思考。帕腾这样做或许是由于她的工作让她知道了太多。或许她就是她自己口中所说的“生存型购物者”,不会为了一双帆布鞋从30美元降价至8美元而激动。这样的想法符合另一种解释,而加布里埃尔·塔德将其称作“怀疑的疯狂”:我们可以接受的不确定性是有限的,我们不会在一个上午无休止地去了解日用品的价格是在上涨还是下降,在某个极限点上,我们将自动屏蔽这些信息。帕腾已经触及了这样的极限点。