对于 CIO 来说,应用机器智能将需要一种新的数据分析思考方式——它不仅仅是一种创建静态报告的手段,也是一种利用更大、更多样的数据语料库来自动执行任务和提高效率的方法。
在机器智能方面,以下是可供 CIO 参考的一系列机会:
认知见解(Cognitive insights): 机器智能可以提供深度的、可操作的可视性——不仅是针对已发生的事情,还有正在发生和即将发生的事情。这可以帮助企业领导人进行预先决策以帮助工作者提高其工作表现。例如在全球各地的呼叫中心,服务代表使用多功能的客户支持程序来进行产品答疑、订单处理、帐单问题调查及其它客户服务。在很多这样的系统中,工作者一般必须在屏幕之间来回跳跃以访问所需回复特定查询的信息。
认知参与(Cognitive engagement): 机器智能价值树的下一个层次是认知代理(cognitive agents),即采用认知技术来与人进行交互的系统。目前,这种技术更多应用于消费者服务而非企业服务。它们响应语音命令来降低恒温器温度或打开电视频道。然而也开始出现了一个新的应用领域,有一些商业任务和流程可受益于这种认知参与。它们或许能提供复杂的信息,执行一些数字任务,比如病人入院或推荐产品和服务。它们可能会在客户服务方面提供更大的商业潜力,也即认知代理可能通过处理帐单或帐户交互、应付技术支持方面的问题以及回答员工人力资源相关的问题来取代一些人类代理。
认知自动化(Cognitive automation): 在第三个——可能是最具破坏性的一个——机器智能的机会中,机器学习、RPA 和其它认知工具深入发展特定领域的专业知识(例如产业、功能或地区方面)然后自动化相关任务。我们已经看到设计有自带机器智能的设备用来自动化那些传统上由训练有素的工人所进行的工作。例如,一家医疗保健初创公司正在应用深度学习技术分析放射学图像。在其测试中,该系统在判断恶性肿瘤方面已达到人类放射专家 50 % 的准确度。
在教育领域,嵌入于线上学习计划中的机器智能性能模仿了一对一辅导的优点,即通过跟踪学习者在问题处理任务期间的「心理步骤」来诊断他对知识的错误理解。然后它们向学习者提供及时的指导、反馈和解释。