随着汽车市场逐步饱和,竞争加剧,车企希望通过拥抱大数据实现精细化经营,领先一步。但是大数据化的过程却并非一蹴而就,也不是简单大数据技术选择,更应该看成一个企业级系统工程,本文结合大数据项目实践和行业理解,着重阐述了如何系统看待大数据建设和关键问题解决思路。
背景
随着汽车普及不断深入,中国汽车市场逐渐饱和,增速放缓,迈入竞争运营阶段到。根据有关报告,2015年,占我国汽车产量98%的37家主要汽车企业形成整车产能3122万辆。其中乘用车产能2575万辆,产能利用率为81%;商用车产能547万辆,产能利用率仅为52%。同时随着近年大数据兴起,越来越多的车企也选择投身大数据潮流,希望通过拥抱大数据,提供更加精细化的业务运营,营销模式变化,乃至企业转型,提供自己运营竞争力。如国际顶级车企大众、宝马、奔驰、还是国内企业长城、吉利等都纷纷开启了自己大数据之路。
然而在大数据化过程中,车企却会发现过程并不是那么一帆风顺,在和车企交流中,往往能听到业务部门的抱怨:
数据质量怎么这么差,用户姓名一看就是随便输入的,手机号码居然只有9位
销量统计错了,把提车数统计到了实销数里了
你做的分析功能我们不需要,对了我们库存预测到底能不能做
…….
信息化部门却会觉得感觉到困惑
我们已经采用先进的大数据技术平台了,但是做些什么业务呢
我们哪里知道业务部门对应计算口径是什么,业务需求不清楚
你这个业务需求,我们没数。。。。
………..
由此如何构建一个高效大数据平台,这不仅仅是简单IT系统建设,更不是简单购买了大数据平台就是实现大数据分析。企业大数据化更应该是一个系统,而是贯穿了管理-业务-系统-数据,逐步规划,逐步建设,而不是一蹴而就。因此基于大数据思考、实践模式,联想总结出企业大数据建设框架,针对其中关键问题提出思考和分析。
大数据之“本”:多源之水,夯实数据仓库
对于成熟的车企要利用大数据产生价值,必然需要构建丰富的数据体系才 能发挥出大数据平台价值,否则将成为无源之水,无本之木。对于车企而言,通常需要围绕四个主要要素构建数据源才能满足整体业务需求:主机厂、渠道、客户、车。
那么车企的有哪些数据呢?通常大部分车企数据传统来源已经有了相对成熟生产系统体系,包括销售领域的分销商管理系统(DMS),经销商使用的CRM、客服中心(Call center)、生产管理系统,质量管理系统(QIS)等等,因此可以满足日常主机厂自身日常运营分析、产品分析以及对渠道运营分析,但是相比,仍然存在如下问题:
客户数据匮乏,相比电信、金融行业,车企行业客户触点过少,而是周期过长,无法构建多维的客户数据
产品质量数据往往通过售后服务反馈,进行被动故障分析排查,难度较高,无法缺少过程数据进行,更无法做到预测性故障分析;
客户信息传播行为发生变化,更多进行网络信息传播,因此通过传统销售系统、售后系统、客服系统相对被动无法满足快速获取信息的需求
因此为了发挥大数据的价值,就需要增加新的数据源,满足业务分析对数据多样化、化的需求
1) 车联网系统:
目前越来越多的主机厂考虑部署或者已经部署车联网系统,从大数据角度来说,通过车联网系统有效补充用户日常数据缺失,以ADAS系统为例,可以捕获如下数据:
用户驾驶行为数据:用户每次驾驶里程,转向习惯,行驶速度、是否有疲劳驾驶等,可以有效帮助客户画像数据构建
产品参数实时获取:不同零部件的关键运营指标,如转速、温度、电子指标等,从而为精细化产品质量预测和分析提供了基础
2) 网络舆情信息:
网络已经是用户信息传播的主要渠道,相比主机厂传统方式,网络信息会更早、更全面反映用户对主机厂的相关信息,通过部署自有网络爬虫系统或者购买第三方的SAAS服务,可以针对重点门户、知名行业网站、论坛、电商平台等
通过爬虫系统可以捕获网络新闻、论坛帖子、用户评论等网络信息
基于大数据技术处理,通过网络信息进行市场营销、品牌影响力、用户习惯、产品质量等分析,以品牌为例,可以完成品牌日常热度、口碑倾向等分析。
3) 第三方外部数据
行业性数据:通过乘联会等行业组织的数据引入,可以有效解决市场趋势分析的数据引入;
第三方用户标签数据:和第三方数据合作中,车企往往希望能得到用户级的数据交换,考虑到第三方数据匹配成功率不足的问题,这就需要车企构建:统一的用户标签体系和用户多ID体系;此外更为可行的做法是充分利用第三方的做好用户画像分析数据,优先完善用户群统计数据;