精神疾病,是又一个需要人工智能技术来仔细咀嚼大量数据,化作有效医学见解的领域。在接下来的两年内,IBM会制造出能从人的讲话中诊断精神疾病的机器学习系统原型。
在精神疾病诊断中,患者的谈话一直是医生用以判断病情的重要因素。语速、音量、用语特点,都可以用于判断精神疾病。现在IBM把这个分析工作交给了人工智能,从患者与医生的交流,或人们自己在社交网站上写下的话语,都可以作为分析材料。
IBM能做到这一点,前提是他们已花费数年时间来研究精神、心理障碍与语言之间的关联,建立起了一套测量体系。“我们目前提上日程的研究,是要弄清这件事:对于特定的个体来说,某段话中的某些用语,能否帮助我们理解这个人的心理状态?”技术总监Parmar说道。
IBM早已有过建立医疗模型的尝试:沃森最早的商业化尝试,“蓝色巨人”认知计算机系统,就是癌症护理医师的助手。今天,公司还与医疗行业产生了不少的合作,建立各式各样的医疗认知工具原型。例如,IBM透露Jupiter Medical Center(木星医疗中心)这家佛罗里达的地方医疗中心就会引进IBM沃森的肿瘤辅助诊疗技术。另外,它还与纪念斯隆凯特琳癌症中心(MSK)合作了癌症治疗培训项目。
除了精神分裂症、双向情感障碍、抑郁症等,IBM还会从可穿戴运动健身设备和医疗设备处获取数据,来辅助诊断帕金森症等神经疾病。虽然现在已经有医药健康专家把可穿戴的数据用在诊断判断上,但IBM希望用机器学习来加速这个进程,并能提供额外的见解。
Parmar说,其实美国和欧洲已经有人做了可穿戴数据的实验,也有教授把实验数据分享了出来,但没有人把这些数据综合到一起,研究这些数据中间是否有可关联之处,或者用整合的数据得出更深层次的理解。“用机器来处理和整合,恰好就是这个问题的答案。”