400-893-5552

深度神经网络“高效”和“搞笑”并存

 
2017-03-27 14:43:35所属分类:行业动态

深度学习变得如此有用,人工智能正在蓬勃发展,很多人甚至开始谈论人类社会“技术奇点”的到来...

\

下棋、图像识别、自动驾驶、金融分析师...看似无所不能、比进化了数百万年人类更有“智慧”的人工神经网络,却有人发现,它有一些比较“搞笑”的方面:

比如 Jeff Clune、Anh Nguyen、Jason Yosinski 训练了一个用于识别物体的系统,该系统99.6%确信左图是一只海星,同样99.6%确信右图是只猎豹。

而另一个来自Google、Facebook、纽约大学和蒙特利尔大学研究人员组成的团队,开发的一个神经网络系统,认为左图是一只狗,而右图(仅在左图的基础上略微改变了像素)是一只鸵鸟。

比较诡异的是,这种事情不是发生了一次两次,而是稳定地出现。

“一个为某一模型生成的样本,通常也会被其他模型错误归类,即使它们有着完全不同的架构。”

“即使使用的是完全不同的数据集。”

左图被神经网络判定为熊猫。给它人为叠加上中图所示微小的扰动(实际叠加权重只有0.7%),就获得了右图。在人类看来,左图和右图没有区别;可是AI却会以99.3%的置信度,一口咬定右图是一只长臂猿。

这些“错误”,不知道是神经网络的缺陷,还是人类肉眼凡胎不识“真相”,目前这些错误被取了一个名字——“对抗样本”。

梳理人工神经网络的历史,感知机—双层神经网络—多层神经网络—深度学习,我们明显看到这是怎样一个曲折的轨迹。

过去神经网络曾经被人弃之如敝履,未来就一定不会遭遇下一个低谷?我想,没人敢打包票。

无论是目前过拟合、梯度消失的固疾,还是对抗样本的问题,都说明以神经网络为代表的机器学习目前还是非常“弱”的人工智能。

而且有一家与DeepMind齐名的人工智能公司 Vicrious ——吸引了Mark Zuckerberg、Elon Musk、Peter Thiel、Jeff Bezos 私人投资,专注于通用人工智能的另类,他们的创始人 Scott Phoenix 曾说:

“深度神经网络(DNN)需要大量的训练数据,不能很好地适用于新的任务或环境。”

(注:有变数,最近DeepMind最近新论文,他们宣称发明弹性权重巩固算法让 AI 拥有“记忆”,目前只能胜任特定领域一项任务的神经网络,开始能够习得“多项技能”)

“此外深度学习往往侧重于学习输入感知与输出动作之间的映射(如用于做分类决策或者是围棋、Atari游戏上的移动的决策),对大脑功能的模拟,太过单一。”

“我们认为智能的本质是能够学习一个所处在世界的心理模型(mental model ),然后能否在这个模型上进行模拟(所谓想象力)。”

深度学习是一个黑盒,我们设定了规则、输入了数据、训练出一个数据处理模型,但是并不了解数据处理在内部究竟如何进行。

那些在输入层、隐层、目标层之间连接的人工神经元发生的所有事情,目前根本无法知晓,所以也无法预测输出的结果:“我们看着Master走出了惊世骇俗的落子,看着它表演,它却不能告诉我们为什么要走这里。”

深度学习用大量的数据样本才能训练“泛化能力”,相比李世石,后者才是真正的天才——他用远远少于AlphaGo的训练样本,达到了接近AlphaGo的水平。目前,人工神经网络仅仅是模拟大脑皮层的一小部分运行方式,而且是跨过了“认识世界”、“认识智能的本质” 这个阶段,直接到了“改变世界”。

基础理论并不成熟的工程应用,其实有着极大的隐患。

Copyright © 2013-2018 合肥彼岸互联信息技术有限公司 All Rights Reserved地址:合肥市高新区亚夏汽车大厦17楼
工信部备案号: 皖B2-20150071-4    增值电信业务经营许可证:皖B2-20150071-4 安全联盟认证 安全联盟认证 安全联盟实名认证

copyright@2015 合肥彼岸互联信息技术有限公司

电话:400-893-5552 0551-65371998 QQ:800022936

地址:合肥市高新区亚夏汽车大厦17楼